    Angle of incidence $$(\theta_\mathrm{i})$$ Angle of refraction $$(\theta_\mathrm{r})$$ $$\mathrm{sin} \space \theta_\mathrm{i}$$ (for graph) $$\mathrm{sin} \space \theta_\mathrm{r}$$ (for graph) $$\frac{\mathrm{sin} (\theta_\mathrm{i})} {\mathrm{sin} (\theta_\mathrm{r})}$$ Plot the points on the graph. 1 Plot the points on the graph. 2 Plot the points on the graph. 3 Plot the points on the graph. 4 Plot the points on the graph. 5 Plot the points on the graph. 6   $m=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$
$m=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$
$m=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$
1.
< 1 2 3 4 >
1. When the angle of incidence is zero, light passes straight through the glass block. It is not bent.
2. Use the slider to choose an angle of incidence.
3. Measure the corresponding angle of refraction. Enter the value in the correct block in the table.
4. Repeat Steps 2 and 3 until the first two columns of the table are complete.
5. Click on the COMPLETE TABLE button to complete the next two columns.
6. Calculate $\mathrm{s}\mathrm{i}\mathrm{n}\left({\theta }_{\mathrm{i}}\right)$ for each angle of incidence and $\mathrm{s}\mathrm{i}\mathrm{n}\left({\theta }_{\mathrm{r}}\right)$ for each angle of refraction. Enter the values in the correct blocks in the table, rounded to three decimal digits.
7. Click on the CALCULATE RATIO to complete the last column.
8. Calculate the ratio $\frac{\mathrm{s}\mathrm{i}\mathrm{n}\left({\theta }_{\mathrm{i}}\right)}{\mathrm{s}\mathrm{i}\mathrm{n}\left({\theta }_{\mathrm{r}}\right)}$ for each row of the table: Enter the values rounded to two decimal digits.
9. Go to the GRAPH tab to continue with the experiment.