\( \sum \boldsymbol{p}_\mathrm{before} = \boldsymbol{p}_\mathrm{1,i} + \boldsymbol{p}_\mathrm{2,i}\)
   \(= m_1\boldsymbol{v}_\mathrm{1,i} + m_2\boldsymbol{v}_\mathrm{2,i}\)
   \(= \) () ( ) \(+ \) () ( )
   \(= \)   \( \space + \space \)(  )
   \(= \)    \( \mathrm{kg{\cdot}m{\cdot}s^{-1}} \)
\( \sum {E}_\mathrm{k(before)} = {E}_\mathrm{k1,i} + {E}_\mathrm{k2,i}\)
\(= \frac{1}{2} m_1(\boldsymbol{v}_\mathrm{1,i})^2 + \frac{1}{2} m_2(\boldsymbol{v}_\mathrm{2,i})^2 \)
     \( \large{=} \space \frac{1}{2}\)() ( )\(^2\)+\( \large{} \frac{1}{2}\)() ( )\(^2\)
     \(= \)    \(\space + \space \)( )
     \(= \)    \( \mathrm{J} \)
\( \sum \boldsymbol{p}_\mathrm{after} = \boldsymbol{p}_\mathrm{1,f} + \boldsymbol{p}_\mathrm{2,f}\)
   \(= m_1\boldsymbol{v}_\mathrm{1,f} + m_2\boldsymbol{v}_\mathrm{2,f}\)
   \(= \) () ( ) \(+ \) () ( )
   \(= \)   \(\space + \space \)(  )
   \(= \)    \( \mathrm{kg{\cdot}m{\cdot}s^{-1}} \)
\( \sum {E}_\mathrm{k(after)} \space = {E}_\mathrm{k1,f} + {E}_\mathrm{k2,f}\)
\(= \frac{1}{2} m_1(\boldsymbol{v}_\mathrm{1,f})^2 + \frac{1}{2} m_2(\boldsymbol{v}_\mathrm{2,f})^2 \)
     \( \large{=} \space \frac{1}{2}\)() ( )\(^2\)+\( \large{} \frac{1}{2}\)() ( )\(^2\)
     \(= \)   \(\space + \space \)(  )
     \(= \)    \( \mathrm{J} \)
00 00

  1. Decide whether you want to see an elastic or an inelastic collision. Click your choice.
  2. Decide in which direction one or both pool balls must travel.
  3. Use the sliders to set the speed of one of both balls.
  4. Click GO to start the motion.
  5. Observe the kinetic energy and momentum of each pool ball before and after the collision. Also note the total kinetic energy and momentum before and after the collision.
  6. Click RESET to start again.